Heriot - Watt University 1 . 9 μ m waveguide laser fabricated by ultrafast laser inscription in Tm : Lu 2 O 3 ceramic

نویسندگان

  • Ajoy Kumar
  • J. MORRIS
  • N. K. STEVENSON
  • H. T. BOOKEY
  • A. K. KAR
  • C. T. A. BROWN
  • J.-M. HOPKINS
  • M. D. DAWSON
  • A. A. LAGATSKY
چکیده

The ultrafast laser inscription technique has been used to fabricate channel waveguides in Tm-doped Lu2O3 ceramic gain medium for the first time to our knowledge. Laser operation has been demonstrated using a monolithic microchip cavity with a continuous-wave Ti:sapphire pump source at 796 nm. The maximum output power achieved from the Tm:Lu2O3 waveguide laser was 81 mW at 1942 nm. A maximum slope efficiency of 9.5% was measured with the laser thresholds observed to be in the range of 50-200 mW of absorbed pump power. Propagation losses for this waveguide structure are calculated to be 0.7 dB⋅cm ± 0.3 dB⋅cm at the lasing wavelength. © 2017 Optical Society of America OCIS codes: (140.5680) Rare earth and transition metal solid-state lasers; (230.7370) Waveguides; (130.3120) Integrated optics devices; (140.3390) Laser materials processing. References and links 1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). 2. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014). 3. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014). 4. F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. Brown, “Lasing action at around 1.9 μm from an ultrafast laser inscribed Tm-doped glass waveguide,” Opt. Lett. 36(9), 1566–1568 (2011). 5. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011). 6. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho, Tm:ZBLAN glass,” Opt. Lett. 37(6), 996–998 (2012). 7. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rareearth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012). 8. J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38(13), 2194–2196 (2013). 9. C. Kränkel, “Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3μm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015). 10. S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60(22), 15173–15178 (1999). 11. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011). 12. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012). 13. E. V. Ivakin, I. G. Kisialiou, and O. L. Antipov, “Laser ceramics Tm:Lu2O3. Thermal, thermo-optical, and spectroscopic properties,” Opt. Mater. 35(3), 499–503 (2013). Vol. 25, No. 13 | 26 Jun 2017 | OPTICS EXPRESS 14910 #292682 https://doi.org/10.1364/OE.25.014910 Journal © 2017 Received 21 Apr 2017; revised 8 Jun 2017; accepted 10 Jun 2017; published 20 Jun 2017 14. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006). 15. A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006). 16. O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012). 17. D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016). 18. R. Yingying, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, C. Feng, and A. K. Kar, “7.8GHz Graphene-Based Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 395–400 (2015). 19. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009). 20. S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004). 21. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988). 22. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics.

Using ultrafast laser inscription, we report the fabrication of a prototype three-dimensional 121-waveguide fan-out device capable of reformatting the output of a 120-core multicore fiber (MCF) into a one-dimensional linear array. When used in conjunction with an actual MCF, we demonstrate that the reformatting function using this prototype would result in an overall through put loss of ≈7.0  d...

متن کامل

11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene

We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-...

متن کامل

Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers.

We report widely tunable (≈ 260 nm) Tm(3+) and Ho(3+) doped fluorozirconate (ZBLAN) glass waveguide extended cavity lasers with close to diffraction limited beam quality (M(2) ≈ 1.3). The waveguides are based on ultrafast laser inscribed depressed claddings. A Ti:sapphire laser pumped Tm(3+)-doped chip laser continuously tunes from 1725 nm to 1975 nm, and a Tm(3+)-sensitized Tm(3+):Ho(3+) chip ...

متن کامل

Microstructural imaging of high repetition rate ultrafast laser written LiTaO 3 waveguides

The microstructural changes associated with the formation of lithium tantalate waveguides after high repetition rate ultrafast laser inscription has been investigated by confocal micro-Raman experiments. While the laser beam focal volume is characterized by significant lattice damage, no reduction of Raman mode strength has been observed at the guiding region, suggesting the preservation of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017